Quantitative Analysis

<u>Determining the empirical experimental formula:</u> Done by burning organic compounds. If you have a pure unknown sample with a mass of 4.34 mg, how would you determine its empirical formula?

4.34 mg burned \rightarrow CO₂ + H₂O, 10.35 mg of CO₂ 3.42 mg of H₂O

12~g carbon / 44~g CO $_2$ (atomic weight of C/molecular weight of CO $_2)~x~10.35~mg = 2.82~mg$ C

2 g hydrogen / 18 g H_2O (atomic weight of H/molecular weight of H_2O) x 3.42 mg = 0.35 mg H

Oxygen by mass difference

Mass of O = 4.34 mg - (2.82 mg C + 0.383 mg H) = Mass of O (1.14 mg)

%C = mass of C/mass of sample x 100% = 2.82 mg C / 4.34 mg sample = 65.1%

%H = mass of H/mass of sample x 100% = 8.83%

%O = mass of O/mass of sample x 100% = 26.1%

Definition: Empirical formula is the ratio of atoms to each other in a molecular formula

There are three steps to calculate the empirical formula:

- 1) Divide each percentage (%) by the atomic weight of the element → crude ratio
- 2) Divide each crude ratio by the smallest crude ratio \rightarrow refined ratio
- Multiply the refined ratio by an integer value $(x2, x3, x4...) \rightarrow$ integral ratio

% Composition	Crude Ratio	Refined Ratio	Integral Ratio
65.1 % C	65.1 / 12.0 =	5.42 / 1.63 =	$3.34 \times 3 = 10$
	5.42	3.34	
	(% C / At Wt C)		
8.83 % H	8.83 / 1.01 =	8.76 / 1.63 =	$5.39 \times 3 = 16$
	8.76	5.39	
26.1 % O	26.1 / 16.0 =	1.63 / 1.63 =	$1.00 \times 3 = 3$
	1.63	1.00	

From the integral ratio, the empirical formula is $C_{10}H_{16}O_3$. Using this formula an empirical weight can be calculated.

C: $10 \times 12 = 120 \text{ g/mol}$ H: $16 \times 1 = 16 \text{ g/mol}$

O:
$$3 \times 16 = 48 \text{ g/mol}$$

$$C_{10}H_{16}O_3 = 184 \text{ g/mol}$$

Note: Given a molecular weight of 368 g/mol, the molecular formula is obtained by multiplying the integral ratios by a factor of 2, resulting in $C_{20}H_{32}O_6$.

The molecular weight can be independently determined via mass spectrometry.

Gas Law: (Different kinds of units for pressure and volume can be used, provided the value of the gas constant is adjusted to those units)

PV = nRT P = Pressure in atm

V = Volume in L

n = Number of moles

T = Temperature in $^{\circ}$ K; $^{\circ}$ K and $^{\circ}$ C are the same size, but 0 K = - 273 $^{\circ}$ C

R = Gas Constant

R is <u>0.082 L · atm.</u>

mol. °K

Standard conditions for temperature and pressure (STP)

Old definition of STP used in this course

Standard pressure is 1 atmosphere = 760 mmHg; standard temperature is $0^{\circ}\text{C} = 273 \text{ }^{\circ}\text{K}$; 1 mol of gas occupies 22.4 L at STP.

Example: $NH_{3(l)} \rightarrow NH_{3(g)}$. Ammonia molecular weight = 17 g/mol; 17 grams of ammonia = 22.4 liters

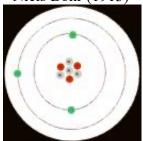
Sample Question: A certain amount of N₂ gas occupies a volume of 3.0 mL at 750 mmHg and room temperature (298 °K). What volume will it occupy at standard pressure and temperature (STP)?

$$\begin{array}{lll} P_1 = 760 \ mmHg & T_1 = 273 \ ^{\circ}K & V_1 = \ ? \\ P_2 = 750 \ mmHg & T_2 = 298 \ ^{\circ}K & V_2 = 3 \ mL \end{array}$$

Solve for V₁

$$V_1 = T_1 P_2 V_2 = (273 \text{ °K})(750 \text{ mmHg})(3 \text{ mL})$$
 = 2.71 mL
 $T_2 P_1$ (298 °K)(760 mmHg)

Question: How many moles of N₂ is 2.71 mL at STP and what is its mass?


Note: 1 mole of an ideal gas occupies 22.4 L at STP.

$$2.71\times10^{\text{--}3}$$
 L \times $\underline{1\text{ mole}}$ = 1.21 \times 10 $^{\text{--}4}$ moles of N_2 22.4 L

$$1.21\times10^{-4}\,mol\times28$$
 g/mol = 3.4 mg of N_2

Atomic Theory:

- Niels Bohr (1913) – Won the Nobel prize for his atomic theory – NOT fully correct

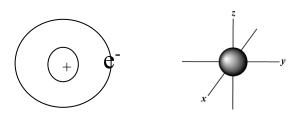
- The neutrons (no charge) and protons (positively charged) occupy a dense central region called the nucleus (p⁺ + N, both have a mass = 1 atomic unit)
- The electrons (negatively charged) orbit the nucleus much like planets orbiting the Sun
- The atom is mostly made up of empty
- de Broglie (1924) His 12 page PhD thesis won him the Nobel Prize
 - He proposed that ordinary "particles" such as electrons and protons could behave as both particles and waves (wave - particle duality of matter)

Particles ↔ Waves

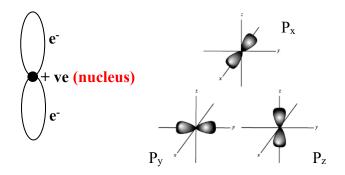
• For the hydrogen (H) atom: >98% of electron density is found in a sphere with diameter of 1Å (10⁻⁸ cm)

Often the electron density distribution is called an "orbital" by chemists

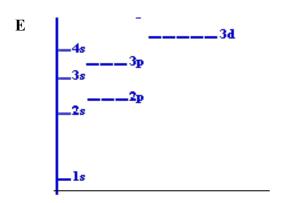
- The orbitals of an atom are described by wave functions (mathematical equations)
- These have no direct physical meaning, but when squared describe electron density


 ψ = Wave function

 ψ = orbital


 ψ^2 = (orbital)² = electron density distribution

Orbitals:


1. s-Orbital - Spherical shaped (electron density)

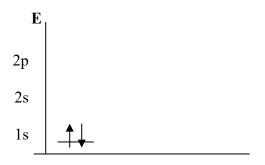
2. *p*-Orbital - Dumbbell-shaped (Three orientations: placed on the x, y and z-axis)

Energy (E) Level Diagram for an Atom:

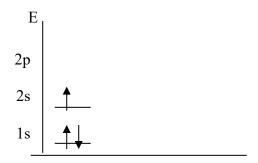
Degenerate orbitals have the same energy


-e.g. all three $2p\ (p_x,\,p_y,\,p_z)$ orbitals have the same energy and are orthogonal to each other

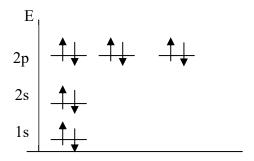
<u>Atoms</u>	<u>Protons (+)</u> = Atomic #	Neutrons	1s electrons	2s electrons	<u>2p electrons</u>
Н	1	0	1		
He	2	2	2		
Li	3	3	2	1	

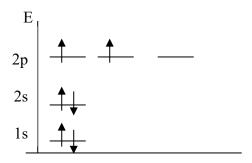

Rules for Filling Electron Orbitals – AUFBAU Rule (Building-Up Principle):

- 1) Add electron to the lowest energy orbital available
- 2) Maximum of two electron per orbital (each having opposite spin quantum number)
 - Pauli Exclusion Principle
- 3) Place one electron into each orbital of the same energy (degenerate orbitals), before adding a second electron
 - Hund's Rule of Maximum Multiplicity


Hydrogen (H) (atomic no. 1)

Helium (He) (atomic no. 2)


<u>Lithium (Li)</u> (atomic no. 3)


Fluorine (F) (atomic no. 9)

$$\begin{array}{c|c}
E \\
2p \\
\hline
2s \\
\hline
1s \\
\hline
\end{array}$$

Neon (Ne) (atomic no. 10)

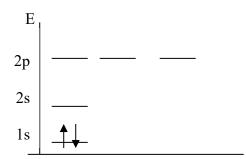
Carbon (C) (atomic no. 6)

All elements want an inert gas configuration (e.g. He and Ne) and from the diagrams above, both Li and F are unhappy with unfilled orbitals (not in an inert gas configuration).

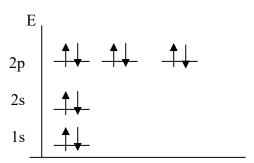
If Li loses an electron to become Li⁺ and obtain inert gas configuration, it becomes isoelectronic with He

-Isoelectronic = same electronic structure

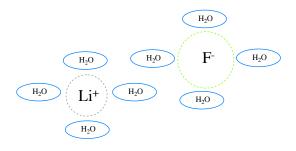
If F gains an electron to become F and obtain inert gas configuration, it becomes isoelectronic with Ne

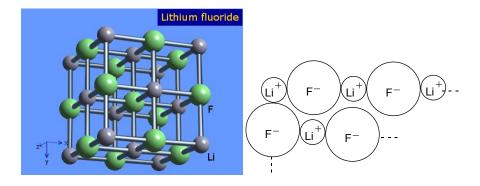

Ionic Bonding

Lithium fluoride (LiF) is an example of <u>ionic bonding</u> in which positive and negative species are bonded to each other. Li could lose 1e⁻ from 2s orbital to become isoelectronic to He (as Li⁺) and F could gain 1e⁻ to become isoelectronic to Ne (as F⁻).


$$Li^{o}$$
 + F^{o} \rightarrow Li^{+} + F^{-}
 $Loss of 1e^{-}$ $Gain of 1e^{-}$

Isoelectronic = Same electron configuration

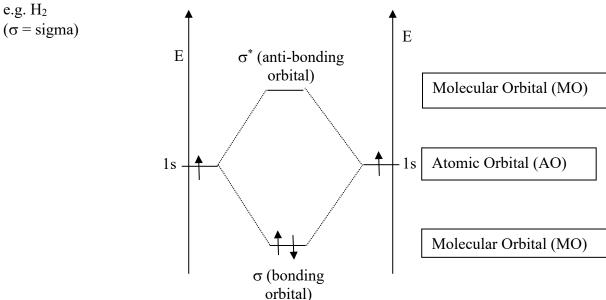

Li⁺ (cation) Isoelectronic with He

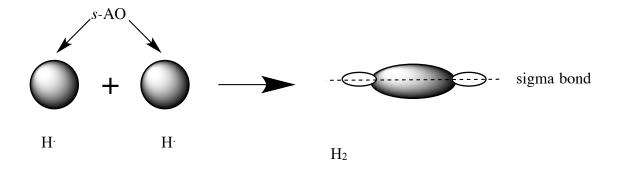

<u>F</u>-(anion) Isoelectronic with Ne

In space, Li⁺ and F⁻ would be attracted to each other In solution, Li⁺ and F⁻ might be separated due to solvation (e.g. water would surround). Larger ions would have a higher degree of solvation than smaller ions (more water molecules would surround the larger molecule).

In a solid, Li⁺ and F⁻ would form a cubic crystalline solid

Electronegativity


- Desire of atoms for electrons
- Electronegativity increases from left to right across the period in the periodic table (atoms get stronger attraction as the nuclear charge increases
- Electronegativity increases from bottom to top in the group (Distance between nucleus and valence shell decreases)


Covalent Bonding

- Sharing of electrons between the atoms
- More common in organic chemistry
- One bond represents 2 electrons

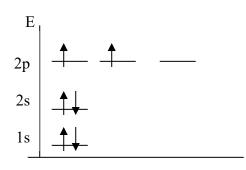
As two hydrogen atoms come together, molecular hydrogen (H₂) is formed to achieve inert gas configuration.

1Å is the average H-H bond distance

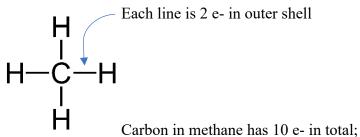


LCAO

- Linear combination of atomic orbitals
- Combination of atomic orbitals of s- character gives molecular orbital called sigma molecular orbital (σ)


Energy diagram of two hydrogen atoms interacting to form a bond:

Electronic configuration of carbon (C):


- Atomic number = 6
- Atomic weight = 12

Carbon (C)

- Carbon needs to gain or lose 4e⁻ to get an inert gas configuration, but this would result in unfavourable charge buildup:
- C⁴⁺ is isoelectronic with He
- C⁴⁻ is isoelectronic with Ne
- So, carbon makes up to 4 bonds to share 4e- (covalent bonding)

Methane (CH₄)

- the 2 e- are in 1s and is not shown
- the other 8 e- are the outer shell electrons drawn as line bond

Geometry of methane

- The orbitals in the second row undergo hybridization.
- Hybridization is the mixing of the 2s (s) orbital and the p_x , p_y , and p_z (p3) to give sp3 hybridization.

• Sp3 = tetrahedron, bond angles are 109.5°